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Abstract—Agents have been observed both naturally and
artificially displaying cooperative behaviours within a species.
This study aims to understand how and why these behaviours
naturally occur and how we may begin to classify them. This
is tested by simulating agents in a 3D environment where agent
data can be analysed. This study shows that it is possible to
distinguish behaviours of agents and begins to show how they
can be more optimal working together. There is good grounds to
believe agents working together can benefit from having different
behaviours in an emergent system.
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I. INTRODUCTION

In nature and in particular the realms of the small, it’s seen
that simple agents can evolve to show emergent behaviours to
better optimise for their environment. Delicate systems that
both rely and thrive on cooperative behaviour can interact to
create even more complex systems [1] [2] [3].

Of particular interest are agents that depend on one another,
where neither is hunter or hunted and the coexistence is
sustainable. Agents can be of the same species but yet display
different behaviours to benefit both themselves and the greater
population. The purpose of this study is to show that a common
relationship can be demonstrated that doesn’t rely on the usual
predator and prey examples seen more commonly in some
other studies [6]. With such a relationship, it should be possible
to show that cooperative agents can out-compete with non-
cooperative counter parts [9].

The agent in this simulation will be a Braitenberg vehicle
at its centre it represents both a simple and iconic agent in
the field of artificial life. In this sense, the simulation should
be kept relatively simple whilst complex behaviours are still
possible [4]. My addition to these simple agents will be the
ability to mate and therefore evolve [7], coupled with the
ability to have a weighting attached from sensors to actuators
instead of binary mappings which differs greatly from the
original design of Brainteburg vehicles. There’ll be no strict
concept of generation programmed into the bots as to mimic
what is seen in more natural systems.

This effectively gives each agent a very simple neural
network with training happening over generations as opposed
to on the same network. The reason for using these agents
will be to maintain as much simplicity as possible in the
already well-proven design, allowing for easier classification
of perceived behaviour.

To achieve this, the following questions need to be an-
swered:

• Is it possible to measure agents behaving in similar
fashions and categorise not reliant on their “genetic”
code, in this case the weights between sensors and
actuators? Does other factors like the agent’s external
environment also make a noticeable difference to the
overall behaviour?

• Can we provide evidence of emergence of emergent
behaviours working together?

• What are the conditions which emergent behaviours
become more optimal by working together?

• If a group of emergent agents were to be removed,
if they truly work together, would there be an impact
on their collective performance, e.g. their ability to
breed?

II. PROBLEM DESCRIPTION

This study tackles the problem of knowing when a be-
haviour is dependant on another behaviour and whether that
relationship is optimal for all sets of agents involved. To do
this the agent behaviour first needs to be classified, followed
by the recognition of an effect when an agent group is removed
from the environment and a measure of success there after.

III. REVIEW OF LITERATURE

It has been shown that a gendered genetic algorithm
can prove optimal when taking into consideration theory of
sexual selection, where agents mate depending on sexual
selection, mutation variations between gender and competi-
tive/cooperative outcomes of effectively having two species
[13]. This study intends to take this a step further by looking
at the cooperative behaviours of agents without the need for
effectively independent species.

Another study shows how cooperation may occur if agents
are arranged in a predator-prey situation, where predator agents
must work together in order to capture prey agents [12].
Whilst the agents do again cooperate to achieve the task,
there is a direct reward for being close to their prey in their
genetic fitness algorithm, so agents achieve the cooperative
behaviour regardless as it’s the most optimal thing for a
single agent to achieve. This project differs from this idea
as an agent can still do well in the environment without



achieving cooperative behaviour, so cooperative behaviour is
not immediately obvious.

There is another interesting study of giving agents the
ability to evolve code instead of genes to achieve cooperative
behaviour [11]. This is a nice approach as it effectively encodes
agents with a greater intelligence but makes each individual
agent much harder to understand when analysing them. It’s a
non-trivial problem to say how closely related two agents may
behave in the environment. Behaviours become much more
difficult to classify which is why this experiment uses the much
simpler genetic code.

Using a co-evolutionary algorithm was yet another consid-
eration if the world complexity is to increase [10]. In order for
a cooperative behaviour to emerge, some agents may have to
take important actions that they may not directly benefit from.
As the agents aren’t very complex and complexity is difficulty
to simulate, the other option to take would be to make agents
aware of other agents success through use of shared fitness.

IV. EXPERIMENT METHODOLOGY

A. High Level Concept

This will involve a simulator that can handle multiple
agents where there is the possibility to breed, die and be
rewarded for a given action. In our case the reward also
encourages breeding as many agents will meet where the
reward exists. The environment should be simple enough that
key concepts may be seen but complex enough that key
concepts may occur.

B. Agents Definition

1) Diagrams

Fig. 1: Vehicle layout and general agent representation

Fig. 2: Vehicle sensor to actuator weighting

(1) A – The right light/temperature sensor. For the purpose
of this they are interchangeable, one could think of it as an
infra-red sensor where both are satisfied.

(2) B – The mating sensor used to both detect a mate and
initiate the making of offspring. In this simulation there is no
gender and the offspring appears into existence.

(3) C – The left light/temperature sensor. (See the right
sensor for detail).

(4) D – Zero friction “caster-wheel” support object. This
is to be under the agent and to allow the agent to move. This
is more for the purpose of the simulator than for purpose of
the results.

(5) E – The agent’s body.

(6) F – The left wheel at fixed velocity, defined by

FV EL = FMAX VEL ∗
(W2 ∗ C) + (W0 ∗B) + (W5 ∗A)

3

(7) G – The right wheel at fixed velocity, defined by

GV EL = FMAX VEL ∗
(W3 ∗A) + (W1 ∗B) + (W4 ∗ C)

3

Where Wi >= −1 , Wi <= 1 , Sn = {A,B,C} , Sn >= 0,
B <= 1, and {A,C} <= MAX(AReward).

The weights in figure 2 almost resemble a simple neural
network, where a genetic algorithm through breeding is how
the agent “learns”. Knowledge and/or learning is passed from
agent to agent through generations such that inter-agent breed-
ing effectively is sharing this knowledge.

2) Overview of Simulator Model



Fig. 3: The vehicle built in the Gazebo environment. Note that
the sensing and mating parts have not been added for the
purpose of collision and visualisation.

Fig. 4: The agents running during the simulation.

In the two figures we can clearly see an example of an
agent and multiple agents interacting with one another. The
design of the vehicles has been kept simple for the purpose
of simulation speed and visualisation of many agents. This
means that with 40 agents the simulation can be run at 3.5
times reality.

There are several note worthy states the agents have been
seen in as simptoms of using a 3D environment, including
agents that move on their side with the flat edge of a wheel
to the ground, agents that move on their back or agents that
throw themselves rapidly between many of these states. Whilst
these were not designed to occur, they serve as an interesting
artefact that could help to counter natural occurrences in nature
we also don’t count on occurring.

The positioning of the plates isn’t particularly important in
the environment, they have just been designed such that they
encourage collisions between them, one of the factors that help
such a small population to continue to breed for so long.

C. Environment Definition

Below is a brief description of the simulation set-up.

Starting Locations – Agents are spawned in a grid like
manner around the centre, each facing a random direction.
Given that the world is complex, it doesn’t take too long before

any evidence of a grid disappears within the randomness and
complexity of the simulation.

Agent Starting Weights – The starting weights of the agents
are 0 <= Wi <= 1 to ensure that all agents are moving in a
forwards direction at the beginning of the simulation. This is
to ensure that agents are working correctly. If agents evolve
to go backwards, this makes the action look more deliberate.
Mating – Mating will require energy from a pair of agents
after a collision from the frontward direction, where an agent
will be created. This will only occur if an agent has previously
died as to prevent over population and will require a sacrifice
of health from both agents to produce another randomly placed
agent within the environment.

When mating, one of the parents is chosen at random to
be the dominant parent gene with a small probability of 10%
to include the other parent’s genes. There is then a further
10% random genetic mutation to accompany this, meaning
on average the child agent will have 20% of its genes not
belonging to its dominant parent.

A mating collision occurs when each agent is within half
the agents width away (measured from the centre of each
agent) and ±0.5236 radians or ±30 degrees. These numbers
only serve to allow relatively successful mating when an agent
is in the correct direction and agents facing one another.

Reward – There will be multiple rewards in the simulation
with the same benefits for each, offering health to the agent.
There will be two static plates in the world, where health is
added with respect to distance to the centre of the plate.

d =
√
(TileXi −Ax)2 + (TileYi −Ay)2

AReward =

N∑
i=0

TileRewardi
(1 + d)2

Where TileReward = 4 and N = 2 for the purpose of
simulation, updated once a second.

Health Decline – A consistent and constant health decline
ensures that agents will eventually die even in perfect settings.
This means they have to pass on their genes in order for their
behaviours to survive. Agents lose 0.5 from their starting 100
units of health every second.

Death – This is simply defined by there being no health
left (< 0Units) for one of the previously mentioned reasons.

D. Environment Measurements

1) Generic Measurements

The experiment should be able to show the following:

Emergence – The point at which agents turn from a random
collection and start to show emergent behaviour. This will be
done using the measurements below.

Multiple Emergent Behaviours – This will be showing mul-
tiple emergent behaviours co-existing in the same environment.
This will be measured by looking at the genetic code and the
time survival.

Cooperative Multiple Emergent Behaviours – Experiments
should show that emergent agents can work together for near



mutual benefit and therefore express an even more complex
behaviour. This is planned to be done by removing agents
from the environment that are identified as of a particular
classification to see whether the other agents are affected by
their lack of presence.

Stability – Agent populations should be considered stable
if they are able to maintain their count over several generations
without sign of diminishing. This amount or percentage will be
decided at a later date when the simulator is built - the likely
deciding factor on the number of agents that can be reasonably
supported.

Genetic variation – The genetic variation will be measured
visually in terms of entropy in comparison with other agents.
Each weight can be compared individually, with variation
also being a way of telling whether a gene is redundant as
redundant genes will be random or locked out. They will then
be measured by taking the average of all significant weights
as to look for behaviours.

Emergent behaviour – This will be partially done through
visual inspection, but behaviours will also be modelled and
classified on their role in the larger group. An attempt will
then be made to generally classify behaviours.

2) Agent Measurements

To categorise agents, there are several methods that are
planned to be used:

Weights – The weights of the agents will be a good
indication of how the agent is supposed to behave in it’s
environment.

Existence Time – If an agent survives a long time compared
to it’s closely genetic relatives, this tells us about the perfor-
mance of the agent and something about its circumstance in
the environment.

It’s also worth noting that these may not be adequate during
the simulation as it depends on what situations arise. There will
be an element of classification by observation before a more
formal description of an agents behaviour is generated.

V. RESULTS

A. Recorded Data Description

Data from an agent is recorded upon an agents death as
the agent collects data about itself throughout it’s life. Below
is a description of the recorded data from agents.

Agent Number (AN) – This simply describes the order in
which the agent died. An agent for example may be the 100th

agent to have died, but it may have taken a million years for
that to have occurred as agents don’t perceive time in that
way. The idea if a generation is meaningless in this setting as
agents continuously breed independent of one another and are
not influenced by external factors.

Breeding Number (BN) – This number represents how
many times an agent was able to breed before it died. This
may be measured as success as it is very likely that large
numbers mean the agent genetics were passed on more for
future use.

Time Lived (TL) – This is the time lived by the agent, as
it is not obvious whether living long is the best strategy for
passing on genetics. This may also be used as a measure for
different types of agents.

Genetic Variation (GV) – This is measured by looking
at the agents weight and comparing overall connections to
indicate whether variation increases or decreases. Individual
weights are then used to highlight important genes. This is
done by visual inspection for patterns as data is relatively
complex.

B. Graphs

Fig. 5: A comparison in Agent Number and Breeding Number
to see whether the number of times an agent breeds before
death increases when agents have bred multiple times as part
of their general self improvement.

Fig. 6: A view of how long an agent could be expected to live
after much breeding has occurred.



Fig. 7: An extremely simple look at whether the agent weights
change by taking the average weight, 1

n

∑n+1
i=0 Wi. In this

graph we can see fluctuations and therefore have reasonable
grounds to investigate further.

(a) AW0 (b) AW1

(c) AW2 (d) AW3

(e) AW4 (f) AW5

Fig. 8: Average of individual genetic weights where we can
see that there is a stepping where a group of agents find a
local optima for a weight.

Fig. 9: A look at the average weights W2, W3, W4 and W5,
showing genetic deviance over time. Agents that bred zero
times before death are ignored and there is a moving average
of 2 ∗AMAX = 100.

Fig. 10: Another scoped view of the weights, this time being
compared to the time the agents spent alive before dying. In
this graph we can clearly see two peaks.

VI. ANALYSIS

A review of figure 5 shows no interesting relationship
between breeding over time. Occasionally some agents achieve
a higher breeding number, but ultimately the number of times
an agent breeds throughout it’s life remains the same on
average.

Figure 6 shows that agents tend to live longer, which makes
sense as this increases their ability to pass on their genetic
code. Figure 7 shows that agents tend change their genetic
variance together, meaning there is a relationship that requires
further analysis.

In figure 8 we see that the attraction to a mate, W0 and
W1 quickly lock out to near enough to a maximum attraction
of 1 without too much opposition. Agents that survive value
breeding as a high priority concern, so this result is expected.
We can then exclude this value from any calculation of genetic
variation as these values don’t appear to be interesting.

A look at W2, W3, W4 and W5 reveal these areas of what
appears to be stepping, where it seems two or more values
were optimal at the same time. Looking a these values more



closely in figure 9 we see that they were becoming less diverse
and steadying. Figure 10 reveals that there were two sets of
agents evolving at the same time, one shorter living pair and
another longer living pair. On closer inspection in the simulator
the longer living pair would sit near to the centre of the reward
tile and spin. The shorter lived agents would then take a much
larger circling approach around the tiles, colliding with many
spinning agents before dying as they were not consistently
close enough to the reward tiles to gain much benefit.

The benefit from this behaviour is that the fast spinning
agents were more likely to be at the correct angle to mate when
the circling agents headed towards them. It seems there is also
an optimal number of agents to maximise this relationship, a
value that can’t be pulled out with such little data. It can be
said that the circling agents are a lot less than those that spin
waiting to be hit. This is likely from two factors, one being
that they are favoured in terms of likelihood to die and another
being that fewer agents are required to search for spinning
agents.

VII. LIMITATIONS

Time – Due the short time allocated to this study, amount
of simulation has been limited against producing a report of
work done and programming the simulator.

Simulator – The simulator, although having a lot of sup-
port, has a reasonable amount of overhead to learning as every
simulator has it’s own ways of handling each feature. This
should have been taken into consideration with the proposal
of this project and expected work.

Agents – There are many aspects of the agents that may
limit dependant behaviour, including complexity, their ability
to mate and choose whether to mate and the randomness in
child agent spawning.

Environment – There are many limiting factors to the
environment, but to name the most prevalent: Unlimited reward
system that doesn’t run down or regenerate in some way as
this is highly un-natural and how the reward is static in the
world. More complexity in the environment would most likely
require a more complex agent to overcome it, or simple agents
working together.

VIII. CONCLUSION

It seems as though it is possible to measure agent’s
behaviour using more than just their genetic code and in
fact this is actually an important aspect to classifying them.
The external environment certainly makes a difference to
the performance of an agent as some agents were “born”
disadvantaged far away from the reward tiles. Some agents
also appeared facing away from the tiles, ultimately leading to
them breeding zero times before mating.

Emergent behaviours have been shown working together
which is one of the main aims of this project. Whilst that idea
is not unique in itself, having multiple emergent behaviours
from agents that share both the same sex and individual fitness
measure is interesting. Child agents don’t need to have a
specified role, e.g. male or female, in order to be able to take
on one of many roles within it’s environment.

Although not directly tackled, the question of what con-
ditions are required to see cooperative agents is something
that the study can start to understand. There needs to be
some method in which child agents can retain dominant
behaviour from either parent. Early testing indicated that this
was extremely important in the development of consistent and
meaningful behaviours.

Due to resource constraints outlined by the limitations
section, removal of agents within the environment could not
be directly demonstrated although it is relatively trivial to see
how the two behaviours, spinning and circling, would be very
worse off without one another’s existence. Not having on of
the groups of agents would clearly be detrimental to the mating
process.

IX. CRITICAL EVALUATION

It would have been good to have been able to run more
simulations and do further experimentation but due to limita-
tions in time these have not been covered. It may have also
been good to have derived the equations on the graphs also,
but again due to time constraints this has not been possible.

There could have also been more use of entropy and
information theory in describing genetic variance for the agents
as this may have allowed for a more accurate description of
behaviours.

X. FURTHER DISCUSSION

One area that should be further explored is whether it is
possible for more than two emergent behaviours to coexist in a
similar setting, as this would really differentiate the importance
of emergent behaviours from a system involving male and
female sexes for example. The implications of this could be
agents with specialist knowledge to achieve a task where each
individual agent doesn’t need to be aware of all possible
behaviours in order to be able to share knowledge of how
to perform a particular behaviour.

Further experimentation should almost certainly involve
more complexity and agent intelligence. This will mean that
agents will not be able to achieve a task themselves and there-
fore encourage more than two individual unique behaviours
to emerge. This should be thought about carefully as analysis
complexity is also likely to increase with the more complex
worlds.
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[10] Drezėwksi, R., Siwik, L. “Agent-Based Co-Operative Co-Evolutionary
Algorithm for Multi-Objective Optimization” Springer LN AI 5097,
pp.288-397, 2008.

[11] Abbattista, F., Abbattista, N., Caponetti, L. “An Evolutionary and
Cooperative Agents Model for Optimization” IEEE Vol.2, pp.668-671,
29 November 1995.

[12] Julaton III, C. “Evolving Cooperative Strategies in Multi-Agent Systems
Using a Coevolutionary Algorithm” Massachusetts Institute of Technol-
ogy

[13] Sánchez-Velazco, J., Bullinaria, J.A. “Sexual Selection with Com-
petitive/Cooperative Operators for Genetic Algorithms” University of
Birmingham


