
1	Introduction
1.1	Book	Layout

1.1.1	In-line	Code
1.1.2	Code	Block
1.1.3	Notes
1.1.4	Warnings

1.2	What	Is	An	OS?
1.3	Why	Build	An	OS?
1.4	What	OS	Will	We	Build?

2	Build	Environment
2.1	VirtualBox
2.2	Development	Environment

2.2.1	Image	Creator
2.2.2	NASM

3	Basics
3.1	Base
3.2	Basic	Computer	Math

4	Bootloader
4.1	Boot	Process
4.2	RAM	Layout
4.3	Registers
4.4	Operations
4.5	Simple	Bootloader
4.6	Simple	Printing	Bootloader
4.7	Very	Simple	Kernel
4.8	Booting	the	Kernel

5	Kernel
6	Programs

6.1	Hello	World	(test)
6.2	File	Viewer	(ls)
6.3	Cat	(cat)

7	The	Future

NOTE:	This	book	is	not	yet	complete,	incomplete	sections	are	marked	with	"TODO".

1	Introduction
The	purpose	of	this	introduction	is	to	set	scene	for	what	should	hopefully	be	an	enjoyable
delve	into	the	world	of	operating	systems	and	operating	system	design.	This	book	does

not	represent	ground	breaking	research	by	an	means	at	the	time	of	writing,	but	could	be
considered	an	insight	into	the	history	of	how	we	got	here	and	should	start	to	build	a
basic	understanding	of	the	complexities	of	operating	systems	and	operating	system
design.

How	this	book	differs	from	others	is	it	tries	to	assume	as	little	as	possible,	with	only
requiring	a	simple	background	in	programming	and	data	structures.	That	said,	even	this
is	something	that	a	smart	individual	may	not	need	in	order	to	understand	this	book.
Another	place	in	which	this	book	differs	from	others	is	the	speed	at	which	we	attempt	to
cover	subjects.	A	competent	programmer	could	complete	this	book	in	an	extremely	short
amount	of	time,	as	a	lot	of	the	theory	could	be	skipped	and	simply	the	code	read	to	gain
an	understanding.	Less	able	readers	may	take	longer,	but	in	general	the	journey	taken
should	be	as	short	as	the	individual	needs	in	order	to	cover	this	subject.

It	is	recommended	that	you	read	this	book	from	start	to	finish	and	do	the	practicals	as
and	when	they	appear	in	the	book,	as	this	is	how	the	book	was	designed	to	be	used.	In
the	section	"Book	Layout"	you	will	also	see	more	detail	about	how	this	book	is	formatted
in	order	for	key	information	to	be	recognised	in	the	text.	Once	comfortable	with	the	text
in	that	section,	it	is	then	suggested	that	you	tackle	the	text	at	your	own	pace.

1.1	Book	Layout
This	section	contains	information	about	the	formatting	of	this	book.	It	is	highly
recommended	that	you	read	this	section	in	it's	entirety	before	picking	and	choosing
which	parts	of	this	book	are	appropriate	to	you	in	order	for	the	other	sections	in	this
book	to	make	sense.

1.1.1	In-line	Code

In-line	code	can	be	either	an	explanation	of	code	seen	in	a	"Code	Block"	or	complete	in
it's	own	right.	It	should	represent	something	that	is	something	a	machine	would
understand,	but	also	be	too	short	that	it	doesn't	make	sense	to	be	in	it's	own	code	block.

The	formatting	is	as	follows:

Code	Here

In	context,	this	may	be	used	as	follows:

You	may	want	to	move	the	value	to	the	 AX 	register.

1.1.2	Code	Block

A	code	block	should	be	one	line	or	many,	although	if	it	is	one	line	it	should	be	of	a
considerable	length	such	that	it	would	not	format	well	as	"In-line	Code".	Like	the	in-line
code,	this	text	represents	something	that	a	machine	would	understand.

The	formatting	is	as	follows:

Code	Here
More	Code	Here

In	context,	this	may	be	used	as	follows:

;	Make	AL	equal	to	21
mov	al,	10
add	al,	10
inc	al

1.1.3	Notes

Notes	should	represent	something	that	you	can	choose	to	read	or	not.	They	usually	are
relatively	small	but	can	be	very	useful	and	read	as	advice.

The	formatting	is	as	follows:

NOTE:	Text	Here.

In	context,	this	may	be	used	as	follows:

NOTE:	Be	sure	to	read	the	rest	of	this	section.

1.1.4	Warnings

Warnings	are	something	you	are	highly	suggested	to	read.	Some	things	we	do	may	be
dangerous,	or	simply	cost	you	time	or	effort	if	you	get	them	wrong.	Sure,	you	don't	have
to	read	them	-	but	if	something	goes	terribly	wrong	the	responsibility	is	on	you.	It	doesn't
matter	how	experienced	or	intelligent	you	are,	mistakes	are	a	very	human	aspect	we	all
share.

The	formatting	is	as	follows:

WARNING:	Text	Here.

In	context,	this	may	be	used	as	follows:

WARNING:	Do	not	skip	over	these	messages.

1.2	What	Is	An	OS?
We'll	first	start	by	defining	a	selection	of	OSes	exist	out	there,	which	should	make	the
explanation	easier	for	most	people	out	there.	The	following	are	very	popular	operating
systems	(the	list	is	far	from	complete):

Android	(Google)
DOS	(Microsoft)
iOS	(Apple)
Linux
Mac	OS	(Apple)
Windows	(Microsoft)

Hopefully	at	least	one	of	those	rings	a	bell,	better	still	you've	used	one	of	these	at	some
point.

The	core	job	of	an	OS	is	to	provide	a	level	of	abstraction	from	the	hardware	it's	running
on.	This	can	be	an	extremely	simple	level	of	abstraction,	meaning	the	underlying	is	still
very	much	visible,	all	the	way	to	a	program	having	no	idea	what	computer	it	is	running
on.

The	reason	for	this	abstraction	is	to	allow	a	program	to	easily	be	used	on	a	piece	of
hardware	without	having	to	worry	about	the	hardware's	specifics,	allow	multiple
programs	to	easily	be	run	on	the	same	platform	and	for	many	OSes	it	will	also	allow	for
multiple	programs	to	be	run	at	the	same	time	with	minimal	awareness	of	the	fact	(in
most	cases).

We	will	concentrate	on	getting	simple	programs	to	run	fairly	oblivious	to	the	hardware
they	are	running	on	-	but	more	on	this	later.

1.3	Why	Build	An	OS?
There	are	many	reasons	to	build	an	operating	system	(OS)	and	those	reasons	will	vary
depending	on	who	you	are	and	what	your	goals	are.	Here	are	just	the	few	of	those:

General	curiosity	-	These	computer	things	surround	us	everywhere	in	desktops,
laptops,	phones,	microwaves,	routers,	vacuum	cleaners,	watches,	toasters,	washing
machines,	light	bulbs	-	the	list	really	does	go	on.	These	are	just	things	you	have	in

your	modern	home,	most	of	which	will	be	running	one	of	many	different	types	of
operating	system.
Advancing	knowledge	-	This	is	a	rather	pure	pursuit	and	a	difficult	thing	to	do.	This
book	will	try	to	guide	you	by	using	understandable	English	for	the	most	part	and
attempting	to	describe	concepts	in	ways	that	are	understandable.	For	those	that	are
already	advanced,	this	can	be	a	quick	and	satisfying	journey	to	adding	another
notch	to	your	rather	formidable	belt.
Fun	project	-	Here	we	should	hopefully	not	only	complete	the	task	of	creating	a	fun
side	project,	but	also	motivate	many	future	side	projects!	Once	you	have	read	and
understood	this	book,	without	a	doubt	you	will	have	more	questions	than	what	you
started	off	with.	This	is	of	course	good	and	is	what	drives	Science	and	explorers	of
the	unknown	in	general.
I	always	wanted	my	own	[My	Name]	OS	-	Doesn't	everybody?	By	the	end	of	this
book	you	should	have	something	to	show	the	nerdiest	of	your	friends,	colleagues,
students	or	family.	For	those	who	do	not	know,	some	of	this	can	also	seem	like
impossible	magic.
I	want	to	be	[Bill	Gates/Steve	Jobs/Linus	Torvalds]	-	Whilst	not	an	easy	thing	to	do,
it's	also	not	impossible.	New	ideas	happen	all	the	time	and	they	often	come	from
surprising	places,	all	of	which	share	in	common	some	dedicated	and	motivated
individual/s	that	allowed	these	large	goals	to	become	reality.

If	you	don't	consider	yourself	to	be	one	of	these	categories,	you	are	also	welcome.	At	the
end	of	this	book	will	be	general	information,	some	of	which	will	contain	various	contact
information.	Please	be	sure	to	explain	what	has	motivated	you	to	pick	up	this	book	and
we	will	look	to	adding	it	to	the	list.

1.4	What	OS	Will	We	Build?
Please	bare	in	mind	that	the	following	may	require	some	technical	knowledge	that	will	be
learned	during	the	development	of	this	system.	If	you	see	words	or	concepts	you	don't
understand,	we	will	visit	them	later.	For	those	in	the	know,	we	thought	it	best	to	justify
design	decisions	before	starting	so	that	the	design	decisions	make	sense	if	you	choose	to
jump	further	ahead.

The	Operating	System	we	plan	to	build	is	the	following,	with	the	attached	reasoning:

16	Bit	-	The	registers,	memory	model	and	boot	process	is	much	simpler	for	a	16	bit
OS.	Switching	to	32	bit	requires	more	knowledge	and	comes	with	it's	own
difficulties,	including	but	not	limited	to	the	supported	instruction	sets	for	32	bit
machines	not	always	being	the	same.	The	X86	architecture	is	old	and	gold,	with	it's
standard	well	defined.	It's	likely	that	we	would	be	able	to	run	our	code	on	any
desktop/laptop	computer	built	within	the	last	10	years	with	an	Intel	processor.

16kB	RAM	-	This	means	that	any	machine	that	supports	the	architecture	would	also
have	enough	RAM	to	run	our	system,	also	meaning	that	we	don't	have	to	switch	to
different	memory	contexts	which	is	required	for	addressing	larger	amounts	of	RAM.
Custom	File	System	-	For	a	simple	OS,	we	don't	care	about	file	sizes,	when	the	file
was	created,	who	created	it,	who	has	permission	to	edit	it,	etc.	We	care	about	the
name	and	where	it's	stored.	For	this	reason,	we	can	keep	the	file	table	(more	on	this
later)	small	and	store	it	completely	in	our	small	amount	of	RAM.
Command	Line	-	It	is	possible	to	draw	graphics	in	16	bit	mode	and	quite	good
graphics	at	that	-	what	becomes	difficult	is	providing	an	interface	in	this	mode	that
is	fast	enough	to	be	usable.	This	requires	more	effort	and	defeats	the	object	of	this
book.
Monolithic	-	The	kernel	will	only	be	able	to	run	one	program	at	a	time.	This	is	again
for	the	ease	of	the	reader,	as	debugging	a	program	with	multiple	threads	can
become	a	headache	for	anybody.	Design	wise,	we	also	don't	need	to	then	create	task
switching	capability,	memory	management,	shared	resources,	etc.

2	Build	Environment
A	build	environment	is	simply	a	place	where	we	will	build	our	system	(or	any	software).
The	reason	for	creating	this	environment	is	we	will	need	specific	tools	to	achieve	our
goals,	something	most	operating	systems	are	not	capable	of	out	of	the	box.	The	reason
for	this	is	that	most	users	will	not	want	to	do	anything	this	advanced	-	so	consider
yourself	one	of	the	privileged	few	who	will	venture	under	the	hood	of	the	computer!

2.1	VirtualBox
To	keep	things	simple,	here	we	will	suggest	the	use	of	VirtualBox,	which	can	be
downloaded	from	https://www.virtualbox.org/wiki/Downloads.	The	idea	is	that	we	should
be	able	to	abstract	your	choice	of	Operating	System	from	the	work	we	wish	to	do	in	this
book.	Of	course	this	can	be	done	on	the	native	operating	system,	but	explaining	how	to
do	this	three	or	more	times	for	each	step	is	somewhat	tedious.	For	the	simplicity	of	the
book,	we	will	be	using	a	very	small	Linux	operating	system	to	do	our	tests.	Insider	that
operating	system,	we	will	then	run	another	virtual	machine	to	minimise	the	risk	to	your
real	machine	(as	we	will	discuss	later,	there	is	the	potential	to	wipe	you	bootloader	and
partition	table	if	care	is	not	taken).

VirtualBox	has	been	chosen	for	being	open	source,	supporting	Windows,	OS	X,	Linux	and
Solaris	-	it	seems	to	be	the	best	compromise.	There	are	of	course	others,	but	when	in
doubt	we	all	tend	to	stick	with	what	we	know.	Once	downloaded	and	installed,	we	can
now	look	to	download	the	image	we	will	use	to	run	the	system.

2.2	Development	Environment
The	development	tools	can	be	found	at	http://coffeespace.org.uk/downloads/os-from-
scratch.zip,	which	you	should	be	able	to	easily	run	without	modification.	Please	note	that
these	tools	are	very	simple	and	not	hardended	in	any	sense,	so	pleae	only	use	these	for
the	purposes	shown	in	this	book.	The	following	will	be	a	description	of	how	to	use	these
tools	to	succesfully	build	your	code.

Fully	extract	the	ZIP	file	for	full	access	to	the	tools.

2.2.1	Image	Creator

For	this	tool	you	will	need	the	latest	version	of	Java	installed	(Java	8	at	the	time	of
writing).	To	run,	simply	type	 java	-jar	ic.jar 	into	your	terminal	(command	prompt,
console,	etc).	A	list	of	uses	should	then	appear.	The	default	configuration	is	that	of	this
book,	which	is	a	simple	floppy	drive.	Further	on	we	will	discuss	how	to	build	images
using	this	tool.

2.2.2	NASM

NASM	(Netwide	Assembler)	is	a	compiler	for	assembly	into	machine	level	code.	This	can
be	found	both	in	the	ZIP	file	which	has	been	tested	for	every	line	featured	here,	or	at
http://www.nasm.us/	which	is	untested.	The	included	version	is	a	snapshot	of	multiple
versions	from	their	site	and	is	unmodified,	including	all	instructions	and	liscensing.

3	Basics
Here,	we	run	through	the	basics	in	order	to	make	sure	that	we	have	the	best	chance	of
getting	through	the	material.	Feel	free	to	skip	through	this	material	as	you	feel
comfortable,	for	programmers,	engineers	and	any	person	with	a	scientific	background	it
is	expected	that	this	will	be	trivial.	For	those	that	are	still	here,	we	all	had	to	start
somewhere	and	now	is	as	good	a	time	as	any.

3.1	Base
If	you	are	not	aware	about	number	bases,	prepare	to	have	your	mind	blown.	Your	whole
life	you	have	been	using	one	without	any	particular	reason	and	without	any	decision
being	made.	Our	ability	to	change	between	these	bases	will	be	useful	later	on.

When	you	count,	if	you	are	Western	you	will	count	from	zero	to	nine,	before	adding	a
number	to	the	left	and	contuing.	An	example	would	be	to	have	nine,	add	one	and	have
10.	Zero	to	nine	is	only	ten	numbers,	the	reason	for	which	is	the	number	of	fingers	we
have.	For	humans,	it's	easy	to	count	using	your	fingers	as	tools	for	counting.	Other
places	in	the	world	use	joints	in	the	fingers,	allowing	them	to	increase	the	base	of	their
counting	system.

Okay,	so	why	is	this	interesting?	Well,	a	computer	really	only	has	one	finger.	On	or	off.
True	or	false.	One	or	zero.	Base	2.	Binary.	This	makes	counting	interesting.	We	have	zero
and	add	one,	now	we	have	one.	We	have	one	and...	Well,	we	have	10.

Let	us	visualise	this	for	128.	In	base	10	(the	one	you	were	likely	taught),	we	have	the
following:

100's	10's		1's
				1				2				8

To	find	out	the	number,	we	effectively	do	the	following:

(100	x	1)	+
(10	x	2)	+
(1	*	8)	=
128

Now	we	want	to	represent	the	base	10	number	in	base	2.	We	again	visualise	this:

128's	64's	32's	16's		8's		4's		2's		1's
				1				0				0				0				0				0				0				0

And	this	is	calculated	out	to	be:

(128	x	1)	+
(64	x	0)	+
(32	x	0)	+
(16	x	0)	+
(8	x	0)	+
(4	x	0)	+
(2	x	0)	+
(1	x	0)	=
128

Hmm,	this	is	interesting,	but	it	takes	more	space?	Well,	computer	scientists	have	this
covered	too	-	base	16,	or	hexadecimal.	Base	16	is	0	to	15,	which	causes	a	problem.	To

solve	this,	new	numbers	are	created.	We	now	count	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,
E,	F.

To	put	this	into	an	example,	we	now	see:

16's	1's
			8			0

And	calculated	out	is:

(16	*	8)	+
(1	*	0)	=
128

Awesome,	we	saved	a	character	when	writing	that	number!	When	writing	a	lot	of
numbers,	this	will	make	some	serious	difference!

But...	There	is	an	issue	here.	Using	all	these	different	bases	cause	confusion	in	some
cases.	The	number	10	could	be	the	following:

Base		2:	(2	*	1)	+	(1	*	0)	=		2	(in	normal	counting)
Base	10:	(10	*	1)	+	(1	*	0)	=	10	(in	normal	counting)
Base	16:	(16	*	1)	+	(1	*	0)	=	16	(in	normal	counting)

There	is	a	simple	solution	for	this,	in	which	we	add	some	identification	to	the	number	in
order	for	us	to	know	which	base	we	are	dealing	with.	The	following	is	the	notation	used:

Base		2:	10b	('b'	for	binary)
Base	10:	10	or	10d	or	10.0	('d'	for	decimal)
Base	16:	10h	or	0x10	('h'	for	hexidecimal)

Hexadecimal	(base	16)	is	typically	the	one	used	for	computers	as	computers	often	work
with	bytes,	a	format	that	only	requires	two	character	to	represent	a	number	from	0	to
255,	or	0h	to	FFh.

3.2	Basic	Computer	Math
Now	we	start	with	some	basic	computer	math	so	that	we	understand	the	computer
instructions	and	logic	to	come.	Very	basic	math	is	of	course	assumed	and	built	upon.

/	or	//	=	Integer	Divide:	An	integer	is	a	whole	number,	1	is	an	integer	but	1.5	isn't.	

5/2 	in	this	case	would	be	2,	remainder	1.	In	this	case	we	don't	care	about	the
remainder	and	integers	don't	deal	with	decimal	places.	The	answer	would	be	2.
%	=	Modulo	or	Modulus:	 5%2 	in	this	case	would	be	2,	remainder	1	as	before,	but	in
this	case	we	care	about	the	remainder,	therefore	the	answer	is	1.
<<	=	Bitshift	Left:	Shifts	the	digits	in	a	binary	number	to	the	left	and	makes	the
right	most	digit	a	zero.	An	example	would	be	 1101b<<1 ,	meaning	we	want	to
shift	the	binary	number	one	place	to	the	left.	The	answer	in	this	case	would	be
1010b.
>>	=	Bitshift	Right:	Shifts	the	digits	in	a	binary	number	to	the	right	and	makes	the
left	most	digit	a	zero.	An	example	would	be	 1011b>>1 ,	meaning	we	want	to
shift	the	binary	number	one	place	to	the	right.	The	answer	in	this	case	would	be
0101b.

If	these	concepts	are	still	confusing,	please	take	some	time	to	reread	and	make	sure	that
you	are	confident	with	these	ideas.	These,	along	with	basic	mathematical	concepts	will
be	very	important	in	understanding	what	is	happening	as	we	build	our	own	OS.

4	Bootloader
"What	is	this	bootloader	you	speak	of?"	you	may	ask	yourself.	Let	us	break	it	down.	It's
the	words	"boot"	and	"loader"	together	for	a	reason.	The	"boot"	process	is	the	starting	of
the	computer	and	the	"loader"	is	the	getting	the	more	interesting	parts	into	action.	On
boot	(now	only	valid	for	older	systems	running	a	traditional	BIOS),	the	computer	will	load
a	small	piece	of	code	into	RAM	that	effectively	has	instructions	for	the	rest	of	the	system
to	run.

4.1	Boot	Process
When	a	computer	is	booting,	the	first	thing	that	will	run	is	the	BIOS	software	(this
doesn't	include	computers	running	UEFI).	This	is	usually	responsible	for	loading	the
kernel	from	the	storage	medium	and	starting	the	process	of	executing	from	RAM.	Of
course	for	our	initial	simple	example,	we	will	simply	just	load	the	bootloader	and	prove	to
ourselves	we	have	booted.	Later,	we	will	look	to	loading	our	own	custom	kernel.

4.2	RAM	Layout
For	now,	we	are	only	interested	in	the	following:

0x0000:0000	to	0x0000:7C00	-	Reserved	for	the	BIOS	and	other	low	level	code.
0x0000:7C00	-	The	position	in	RAM	that	the	bootloader	will	be	loaded	into.

In	theory	we	have	access	to	1MB	(One	Mega	Byte)	of	RAM	(Random	Access	Memory)
available	to	us,	but	due	to	simplicity	we	will	only	have	access	to	a	much	smaller	amount
to	prevent	us	having	to	switch	the	RAM	space	we	are	working	in.	At	this	low	level,
unfortunately	we	don't	have	the	luck	of	getting	any	memory	management,	meaning	that
we	have	to	be	careful	about	how	we	use	memory!

4.3	Registers

AX 	-	(General	Purpose)	Multiply,	divide,	load	and	store
BX 	-	(General	Purpose)	Index	register	for	move	operations
CX 	-	(General	Purpose)	Counting	for	operations	and	shifts
DX 	-	(General	Purpose)	Port	address	for	IN	and	OUT	operations
SP 	-	Top	of	stack	pointer
BP 	-	Bottom	of	stack	pointer
SI 	-	Source	index	for	streams
DI 	-	Destination	index	for	streams
IP 	-	Instruction	pointer
Flags	(see	https://en.wikipedia.org/wiki/FLAGS_register)

More	information	on	registers	can	be	found
https://en.wikipedia.org/wiki/X86_assembly_language.

NOTE:	Some	registers	may	be	processor	specific	-	the	fact	they	work	on	your	machine	or
in	a	virtual	machine	does	not	mean	they	will	work	for	a	wide	variety	of	hardware.	Be	sure
to	use	the	most	generic	instructions	possible	to	make	sure	you	have	as	large	support	as
possible.

4.4	Operations
The	following	operations	are	not	the	complete	set	of	possible	operations,	that	list	is	very
long	indeed!	But	here	are	a	few	instructions	that	are	used	regularly	and	their	purpose	-
enough	to	get	you	setup.

add	X,	Y 	-	Adds	X	and	Y	and	stores	the	result	in	X.

call	X 	-	Pops	the	current	position	in	memory	onto	the	stack	and	jumps	to	the
position	X.	To	return	from	a	function,	see	 ret .
cmp	X,	Y 	-	Short	for	"compare",	this	operation	compares	the	values	X	and	Y,
storing	the	result	in	various	flags	(which	can	be	used	by	jumping,	via	 je ,	 jl ,	 jg ,
etc).
dec	X 	-	Decrements	(subtract	one)	from	X	and	stores	the	value	in	X.
div	X 	-	??
inc	X 	-	Increments	(add	one)	to	X	and	stores	the	value	in	X.
int	X 	-	Calls	an	interrupt,	X,	which	in	turn	performs	an	operation	depending	on	the
register	values.
jmp	X 	-	Jump	to	a	position	in	memory	denoted	by	X.
lodsb	X 	-	Loads	a	byte	from	memory	into	X,	the	position	denoted	by	registers.
mov	X,	Y 	-	This	instruction	is	short	for	"move"	and	moves	the	contents	of	Y	into	X,
but	Y	remains	the	same.
mul	X 	-	??
pop	X 	-	Pops	a	register	from	the	stack	denoted	by	X.
popa 	-	Pops	all	the	general	purpose	registers	onto	the	stack.
push	X 	-	Pushes	a	register	to	the	stack	denoted	by	X.
pusha 	-	Pushes	all	the	general	purpose	registers	to	the	stack.
ret 	-	Stands	for	"return",	allowing	a	return	to	the	previous	position	of	a	call
operation.
stosb	X 	-	Stores	a	byte	from	X	into	memory,	the	position	denoted	by	registers.
sub	X,	Y 	-	Subtracts	Y	from	X	and	stores	the	result	in	X.

Further	information	about	operations	can	be	found	at
https://en.wikipedia.org/wiki/X86_instruction_listings#x86_integer_instructions.	We	will
try	to	explain	operations	as	we	go	in	the	text,	comments	of	the	code	and	operation	of	the
code.

4.5	Simple	Bootloader
Now	it's	time	to	boot	the	first	piece	of	code!

First,	write	the	following	code	to	a	file	called	 boot.asm .	We	aren't	going	to	concern

ourselves	with	exactly	how	the	it	works	for	this	moment,	we	will	discuss	this	later.

NOTE:	You	may	be	able	to	work	out	exactly	how	this	works	by	looking	at	the	above
operation	codes	as	well	as	the	comments.	Searching	online	may	also	be	required.

;	Align	the	code	to	the	position	in	RAM	we	will	load	from
org	7C00h
boot_start:
		;	TODO:	Write	some	code	here.
boot_stop:
		;	Jump	infinitely
		jmp	$
;	Pad	out	the	bootloader	to	510	bytes
times	0200h	-	2	-	($	-	$$)	db	0
;	Add	the	boot	signature	to	the	code
boot_signature	dw	0AA55h

Now	we	will	need	access	to	the	terminal,	or	this	may	be	called	"Command	Prompt"	or
"Shell"	depending	on	your	machine.	This	will	be	different	per	operating	system,	so	it's
reccomended	that	you	learn	how	to	do	this	for	yours.	You	will	also	need	the	ability	to
navigate	the	directories	of	the	operating	system	via	this	terminal.

Next,	we	will	have	to	compile	this	code	with	the	following	command:

nasm	boot.asm	-o	boot.bin

This	means	that	we	are	using	the	source	file,	 boot.asm ,	and	writing	an	output	(-o)	file,	
boot.bin .

NOTE:	If	the	terminal	complains	about	the	program	 nasm 	not	existing,	try	moving	your
code	to	the	same	place	that	the	 nasm 	binary	is	located.

A	new	file	should	now	be	located	where	you	compiled	your	program.	The	next	step	will
be	to	copy	this	file	to	the	location	of	 ic.jar ,	our	image	creator	for	this	operating
system.	To	use	this	program,	run	the	following:

java	-jar	ic.jar	*.bin

This	tells	the	temrinal	to	run	 java ,	the	file	we	want	to	run	is	a	JAR	(-jar),	the	program
to	be	run	which	is	 ic.jar 	and	what	to	load	into	the	program	(*.bin).	The	 * 	is	a

wildcard,	meaning	that	any	files	we	compile	with	the	 .bin 	extension	on	them	will	be
included	in	the	image	generated.

Once	this	program	has	complete,	we	should	see	some	output	such	as:

[ADD]	`boot.bin`
[DEL]	`boot.bin`
[SET]	bootloader	->	boot.bin
[SET]	output	->	os.img
[SET]	mediaSize	->	1474560
[>>>]	Finished	generation

There	should	now	be	a	new	file	called	 os.img 	in	the	directory.	This	is	our	floppy	disk
image!	We	will	now	need	to	load	this	image	into	the	floppy	disk	section	of	our	virtual
machine.	When	we	do	so	we	should	see	that	the	it	boots...	That's	it.	Okay,	it's	not	exciting
-	so	let	us	create	something	more	interesting!

NOTE:	If	the	virtual	machine	complains	about	not	having	an	bootable	media,	it	means
that	you	have	not	mounted	the	files	correctly.	If	you	are	not	able	to	easily	work	this	out,
please	use	your	favourite	search	engine	to	achieve	this	task	for	your	specific	virtual
machine.

4.6	Simple	Printing	Bootloader
Next,	we	look	to	create	a	bootloader	that	does	something	more	useful	to	us.	In	this	case,
we	look	to	display	some	text	with	a	basic	printing	function	that	we	write.	The	below	code
is	broken	up	with	various	comments	about	what	each	part	is	doing	in	more	detail.

;	Align	the	code	to	the	position	in	RAM	we	set	ourselves
org	0h

The	first	notable	difference,	we	have	organised	our	code	at	offset	 0x0000:0000 .	This	is
because	we	orient	ourselves	from	where	this	bootloader	starts	below.

;	boot_start()
;
;	Starts	the	boot	process.
boot_start:
		mov	ax,	08E0h
		;	Disable	interrupts	while	changing	stack
		cli
		mov	ss,	ax
		mov	sp,	4096
		;	Restore	interrupts
		sti

		;	Direction	for	string	operations	'up'	-	incrementing	addresses
		cld

		;	Set	all	segments	to	match	where	kernel	is	loaded
		mov	ax,	07C0h
		;	Handle	the	segments
		mov	ds,	ax
		mov	es,	ax
		mov	fs,	ax
		mov	gs,	ax

Here	we	can	see	we	align	our	position	in	RAM	by	setting	the	offset	of	 0x0000:07C0 	in
the	register	 AX 	and	setting	the	various	segment	registers	to	the	content	of	 AX .	This
means	that	anything	that	is	RAM	position	dependant	before	this	code	will	not	have	the
correct	alignment,	as	the	segments	will	still	be	at	the	start	of	RAM	instead	of	our	ofset.

		;	Needed	for	some	older	BIOSes
		mov	eax,	0

Sometimes	these	quirks	creep	in,	usually	due	to	bad	design	at	some	stage.	Possibly	some
BIOS	assumed	this	would	be	set	and	as	a	result,	other	bootloaders	must	set	this	value	in
order	to	boot	those	machines.

		;	Make	sure	we	start	in	correct	text	mode
		mov	ax,	03h
		int	10h

Before	continuing,	we	want	to	make	sure	that	we	are	in	the	right	text	mode	to	print	an
error	or	prompt	if	we	have	to.	In	normal	operation	we	would	start	looking	for	a	kernel	-

which	may	or	may	not	be	on	the	disk.	The	only	thing	we	can	assume	is	that	the
bootloader	has	been	correctly	loaded,	everything	else	is	a	variable	we	must	consider.

;	boot_main()
;
;	The	main	code	to	be	run	in	the	boot	process.
boot_main:
		mov	si,	message
		call	boot_print

Here,	we	load	the	position	in	RAM	of	the	message	into	the	register	 SI ,	indicating	the
index	of	the	source	information.	We	then	call	our	 boot_print 	function	to	print	the
message.

;	boot_stop()
;
;	Stops	the	bootloader	from	running.
boot_stop:
		;	Jump	infinitely
		jmp	$

When	the	above	call	to	 boot_print 	finsihes,	it	will	continue	execution	to	this	code
section.	 jmp 	tells	the	processor	to	start	executing	at	a	position,	 $ 	indicating	the	current
position.	This	means	we	have	an	infinite	loop	-	there	is	no	way	to	escape	until	the
computer	is	switched	off.

;	boot_print()
;
;	Prints	a	string	to	the	display.
;
;	@param	SI	Position	of	the	string.
boot_print:
		pusha
		mov	ah,	0Eh
.repeat:
		lodsb
		int	10h
		cmp	al,	0
		jne	.repeat
.done:
		popa
		ret

pusha 	tells	the	processor	to	put	all	the	general	purpose	registers	onto	the	stack	for	safe
keeping.	 popa 	in	turn	returns	them	from	the	stack,	back	into	the	general	purpose
registers.	Next	we	see	that	we	put	 0Eh 	into	 AH 	-	this	indicates	the	later	intterupt	should
be	to	print	some	teletype	text.	This	means	the	text	will	automatically	wrap	at	the	end	of
the	display	and	will	increment	the	cursor	(the	blinking	line	in	the	text	editor	so	you	know
where	the	keyboard	is)	position.

lodsb 	loads	the	next	byte	from	the	position	indicated	by	 SI 	into	 AL .	 SI 	is	incremented
every	time	it	is	called.	 int	10h 	is	a	video	interrupt,	in	this	case	to	print	our	character
stored	in	 AL .	There	are	various	others	with	advantages	and	disadvantages.

We	then	compare	the	contents	of	 AL 	to	zero.	If	it's	not	equal	to	zero,	we	jump	back	to	
.repeat 	and	continue	printing.	The	jump	is	 jne ,	standing	for	"jump	if	not	equal".	If	 AL
is	equal	to	zero,	no	jump	occurs	and	the	code	runs	through	to	 .done 	section.	At	the	end,
we	have	 ret 	to	return	to	where	we	were	called	from.

NOTE:	The	 . 	in	front	of	the	label	means	that	the	label	is	only	in	scope	for	the	above
label	without	a	 . .	This	means	that	the	label	cannot	be	referenced	from	outside	it's
scope.

message	db	'Hello	World!',	0

We	store	our	message	in	bytes	(db),	with	a	terminator	byte	being	 0 	to	indicate	the	end
of	the	string.

;	Pad	out	the	bootloader	to	510	bytes
times	0200h	-	2	-	($	-	$$)	db	0

We	pad	the	bootloader	with	zeros	to	make	sure	it	is	of	the	right	size	to	be	accepted.

;	Add	the	boot	signature	to	the	code
boot_signature	dw	0AA55h

The	 boot_signature 	is	very	simple	way	for	the	BIOS	to	know	whether	there	is	a	valid
bootloader	to	be	loaded.	Not	all	medium	attached	to	the	computer	will	contain	runnable
code	-	this	is	how	the	computer	knows	whether	to	execute	the	code	or	not.

There	we	have	it,	our	first	interesting	bootloader!

4.7	Very	Simple	Kernel
The	below	code	is	for	a	very	simple	kernel,	something	that	we	will	not	go	through	in
detail	her.	As	you	can	see,	it	very	much	looks	like	the	bootloader	code	and	you	should	be
able	to	work	out	it's	purpose.

;	Align	the	code	to	the	position	in	RAM	we	will	be	loaded	to
;	NOTE:	We	leave	a	512	byte	gap	for	the	file	table	to	be	loaded.
org	400h

;	kernel_start()
;
;	Starts	the	kernel	process.
kernel_start:

;	kernel_main()
;
;	The	main	code	to	be	run	in	the	kernel	process.
kernel_main:
		mov	si,	message
		call	kernel_print

;	kernel_stop()
;
;	Stops	the	kernel	from	running.
kernel_stop:
		;	Jump	infinitely
		jmp	$

;	kernel_print()
;
;	Prints	a	string	to	the	display.
;
;	@param	SI	Position	of	the	string.
kernel_print:
		pusha
		mov	ah,	0Eh
.repeat:
		lodsb
		int	10h
		cmp	al,	0
		jne	.repeat
.done:
		popa
		ret

message	db	'Hello	World!',	0

Compile	the	code	as	 kern.asm 	and	include	it	on	the	command	line	if	the	image	creation
utility.

4.8	Booting	the	Kernel
Now	for	the	exciting	part,	we	are	finally	going	to	boot	our	first	kernel!	First,	we	must
think	about	the	steps	required	in	the	boot	process	in	order	to	get	us	there.	We	must	do
the	following	to	boot	the	kernel:

1.	 Load	the	file	table	into	RAM.
2.	 Search	file	table	for	the	kernel	entry,	 kern .
3.	 Load	the	kernel	sectors	into	RAM.
4.	 Begin	executing	the	kernel.

If	we	fail	to	load	the	kernel,	we	will	want	to	do	thefollowing	steps	after	the	previous	third
step:

4.	 Display	error	message.
5.	 Jump	infinitely	to	prevent	bad	code	execution.

For	this	to	work,	we	are	going	to	want	some	basic	functions	that	we	can	use	over	and
over:

Abiltiy	to	load	a	file	from	a	given	position	on	the	disk.
A	very	simple	comparison	of	a	string	and	a	position	in	the	file	table.

Effectively,	what	we	are	aiming	to	do	is	build	a	small,	read-only	command	line	operating
system	so	that	we	can	load	files	into	RAM	and	run	them,	in	this	case	the	kernel.	We	will
also	want	to	display	an	error	message	if	we	fail	to	boot	for	some	reason	and	allow	a	user
to	type	in	a	different	kernel	name	from	the	default.

Below	is	original	bootloader	with	additions	that	will	allow	us	to	boot	our	kernel:

;	Align	the	code	to	the	position	in	RAM	we	set	ourselves
org	0h

;	boot_start()
;
;	Starts	the	boot	process.
boot_start:
		mov	ax,	08E0h
		;	Disable	interrupts	while	changing	stack
		cli

		cli
		mov	ss,	ax
		mov	sp,	4096
		;	Restore	interrupts
		sti

		;	Direction	for	string	operations	'up'	-	incrementing	addresses
		cld

		;	Set	all	segments	to	match	where	kernel	is	loaded
		mov	ax,	07C0h
		;	Handle	the	segments
		mov	ds,	ax
		mov	es,	ax
		mov	fs,	ax
		mov	gs,	ax

		;	Needed	for	some	older	BIOSes
		mov	eax,	0

		;	Make	sure	we	start	in	correct	text	mode
		mov	ax,	03h
		int	10h

;	boot_main()
;
;	The	main	code	to	be	run	in	the	boot	process.
boot_main:
		mov	si,	msg_loading
		call	boot_print

		;	Load	the	file	table	into	RAM
		mov	cx,	2
		mov	si,	position_table
		call	boot_load

		;	Search	the	loaded	file	table
		mov	cx,	0
		mov	di,	str_file
		call	boot_table_search

		;	Check	that	we	managed	to	find	a	kernel
		cmp	cx,	0
		je	boot_stop

		je	boot_stop

		;	Load	the	kernel	into	RAM
		mov	si,	position_kernel
		call	boot_load

		;	Start	executing	our	kernel
		;	NOTE:	We	call	the	kernel	encase	the	kernel	does	a	bad	return.
		call	position_kernel

Above	we	have	our	boot	logic,	where	we	run	through	the	steps	we	previosuly	mentioned.
A	lot	of	code	will	jump	to	the	kernel,	which	is	tecnhically	correct.	The	issue	with	this	is
when	writing	a	potentially	bad	kernel,	a	bad	 ret 	could	have	unknown	concequences.	In
our	code,	this	simply	writes	an	error	to	the	display.

;	boot_stop()
;
;	Stops	the	bootloader	from	running.
boot_stop:
		;	Display	an	error	message
		mov	si,	msg_error
		call	boot_print
		;	Jump	infinitely
		jmp	$

Here,	we	are	printing	a	message	to	indicate	there	has	been	an	error	-	both	for	our	use
and	the	use	of	any	potential	user.	A	better	system	would	print	some	error	code	for	the
purpose	of	debugging	too.

We	should	technically	call	the	video	mode	interrupt	encase	somebody	in	the	higher	level
decided	to	switch	to	a	graphics	code.	Technically,	the	processor	may	even	be	in	32	or	64
bit	mode,	somethign	that	we	should	be	able	to	test	for.

;	boot_print()
;
;	Prints	a	string	to	the	display.
;
;	@param	SI	Position	of	the	string.
boot_print:
		pusha
		mov	ah,	0Eh
.repeat:
		lodsb
		int	10h

		int	10h
		cmp	al,	0
		jne	.repeat
.done:
		popa
		ret

;	boot_table_search()
;
;	Search	the	filetable	for	a	file	and	return	it's	position,	otherwize	zero.
;
;	@param	CX	Offset	to	search	from,	starting	from	zero.
;	@return	CX	Sector	containing	the	file,	otherwise	zero.
boot_table_search:
		push	ax
		push	bx
		push	dx
		mov	si,	position_table
.loop:
		inc	cx
		mov	dx,	0
.check_pos_1:
		lodsb
		mov	ah,	[str_file	+	0]
		cmp	al,	ah
		jne	.check_pos_2
		inc	dx
.check_pos_2:
		lodsb
		mov	ah,	[str_file	+	1]
		cmp	al,	ah
		jne	.check_pos_3
		inc	dx
.check_pos_3:
		lodsb
		mov	ah,	[str_file	+	2]
		cmp	al,	ah
		jne	.check_pos_4
		inc	dx
.check_pos_4:
		lodsb
		mov	ah,	[str_file	+	3]
		cmp	al,	ah
		jne	.check_loop

		jne	.check_loop
		inc	dx
.check_find:
		cmp	dx,	4
		je	.done
.check_loop:
		cmp	cx,	512	/	4
		jl	.loop
.not_found:
		mov	cx,	0
		jmp	.done
.done:
		pop	dx
		pop	bx
		pop	ax
		ret

This	method	is	by	far	the	largest	we've	added	so	far,	but	is	relatively	simple.	It's	purpose
is	to	find	the	position	of	a	file	on	the	disk,	by	checking	for	four	letter	filenames	stored
back-to-back	in	the	file	table.	There	are	no	folders,	permissions,	links	-	anything.	Just	a
four	character	filename	and	where	it	points	to.

What	this	method	does	is	simple,	it	tests	each	character	one	by	one	and	collects	the
number	of	matched	chracters	in	 DX ,	so	that	we	know	we	have	a	full	match	if	we	have	4
characters.	This	code	isn't	as	efficient	as	it	could	be,	but	it	is	easy	to	understand	given
some	time	to	read	through	it.	A	more	complex	version	would	use	a	proper
implementation	of	a	string	comparison.

;	boot_load()
;
;	Load	a	sector	from	the	disk.
;
;	@param	CX	The	sector	to	load	from	the	disk.
;	@param	SI	The	position	to	load	the	file	into.
boot_load:
		mov	ax,	0201h
		jmp	boot_disk_manage

;	boot_write()
;
;	Write	a	sector	to	the	disk.
;
;	@param	CX	The	sector	to	write	to	the	disk.
;	@param	SI	The	position	to	read	the	sector	from.
boot_write:
		mov	ax,	0201h

;	boot_disk_manage()
;
;	Handle	the	disk	operation.
;
;	@param	AL	Number	of	sectors.
;	@param	AH	The	disk	mode	to	operate.
;	@param	CX	The	sector	to	perform	the	operation	on.
;	@param	SI	The	position	in	RAM	to	perform	the	operation	with.
boot_disk_manage:
		push	bx
		push	dx
		mov	dx,	0
		mov	bx,	ds
		mov	es,	bx
		mov	bx,	si
		int	13h
		pop	dx
		pop	bx
		ret

We	implement	both	read	and	write	functions	to	disk	as	they	are	extremely	similar	-
almost	no	cost	to	having	both	exist.	The	function	simply	correctly	sets	registers	and	uses	
int	13h 	to	perform	the	disk	operation.	As	you	may	imagine,	the	time	this	was	written

meant	that	it	was	very	much	designed	to	be	used	with	a	floppy	drive,	hence	is	a	very
limited	way	to	communicate	with	devices.

msg_loading	db	'Loading...',	10,	13,	0
msg_error			db	'Error',	10,	13,	0
str_file				db	'kern',	0

;	Pad	out	the	bootloader	to	510	bytes
times	0200h	-	2	-	($	-	$$)	db	0
;	Add	the	boot	signature	to	the	code
boot_signature	dw	0AA55h

;	Positions	of	various	important	sections	in	RAM
position_table		equ	200h
position_kernel	equ	400h

Congratulations,	we	can	now	boot	our	simple	kernel	successfully!	There	are	some	things
we	should	bare	in	mind	now	that	we	are	loading	files:

Our	floppy	disk	is	not	compatible	with	any	operating	system,	it's	very	custom!
The	kernel	with	this	system	can	only	be	512	bytes	or	less	in	size,	anything	larger
and	it	will	not	be	loaded.	This	is	the	same	limitation	with	all	files	with	this	read
method.
We	can	only	load	a	small	number	of	files	onto	the	disk	as	the	filetable	is	very	small.
A	larger	file	table	will	allow	for	more	files.

NOTE:	The	limitation	of	the	kernel	size	can	be	fixed	later	with	the	addition	of	loop	to
keep	searching	for	a	file	of	the	same	name	on	the	disk.	This	does	make	our	task	more
complex	as	we	must	then	loop	to	find	files	which	may	be	fragmented.	Another
complication	is	with	removal,	addition	or	editing	files	as	we	can	no	longer	easily	make
any	assertions	about	the	files	without	loading	them.	With	this	filesystem,	it's	costly	to
check	the	size	of	a	file	for	example.	Modern	operating	systems	typically	precompute
these	values	and	have	them	with	the	filename	making	searching	much	easier.	In	fact,
almost	all	data	that	doesn't	require	you	to	load	the	file	to	disk	will	be	stored	outside	of
the	file.

5	Kernel
TODO:	Write	this	section.

6	Programs
TODO:	Write	this	section.

6.1	Hello	World	(test)

TODO:	Write	this	section.

6.2	File	Viewer	(ls)

TODO:	Write	this	section.

6.3	Cat	(cat)

TODO:	Write	this	section.

7	The	Future
Firstly,	congratulations	on	getting	this	far.	You	now	have	a	working	operating	system,
upload	it	to	the	internet	and	see	where	it	takes	you!	Show	your	friends,	family,
colleagues,	class	mates,	children,	cats,	plants	-	let	them	all	know	what	you	have
achieved.

But	now	you	may	be	wondering,	"What	next?"...	Well,	the	journey	is	not	yet	over	and	if
you	want	to	continue	-	all	the	more	to	you.	The	following	is	a	list	of	ideas	that	could	be
extended	on	the	make	this	system	much	better.

More	Programs	-	You	can	never	have	enough	programs!	How	about	a	simple	text
editor,	simple	game,	serial	port	program	-	the	list	goes	on.	Anything	you	can	think	of
can	be	created,	given	enough	time.	You	will	start	to	run	into	some	limitations
though,	the	first	being	the	kernel...
Kernel	-	Extend	on	the	kernel,	multi-core	support,	memory	management,	drivers,
GUI	support,	etc.	You'll	have	to	do	some	additional	reading	for	these	concepts,	but
it's	worth	it.
Internet	-	Computers	really	got	interesting	once	we	connected	them	together	and
how	else	better	to	test	your	programming	skills	than	to	connect	your	newly	formed

operating	system	to	the	rest	of	the	world?	Start	simple	with	a	telnet	server	and	see
how	far	you	can	go!

