Git Basics

Daniel Barry
November, 2016

University of Hertfordshire

Introduction

Why use Git?

Replace the old “copy and rename” workflow

History of how the project was built

Ability to go back to any point during the project

Always having a working version

Work in teams easily

Access to large open source projects

Employers prefer you know how repositories work

This presentation was built in a Git repository!

Quick Git History

Patches and Archives for Linux Kernel (1991 - 2002)
BitKeeper for Linux Kernel (2002 - 2005)
In 2005, BitKeeper no longer free (Larry McVoy)

Linus Torvalds designed Git to be fast, simple, non-linear,
distributed and scalable

e Git for Linux Kernel (2005 - now)

More: https://en.wikipedia.org/wiki/Git

https://en.wikipedia.org/wiki/Git

Inspired by BitKeeper

Version control system

Fully distributed
e Merges, even three-way merges

e Robust against corruption

Git was named after Linus...

Branches?

le Edit View Help

SHALID:

remu es/latitude

bels: remove B B Sander van Difb 2016-04-05 203535

Option to set base dir for finding conf files Sander van DIy 20160403 200503
Use inclusive bounds area for

Test that enough pixels are ball pixals, Sander van Dijh 20160405 134527
Reinstate ba -, rd

area ratio check Sander van Dijb 2016-04-05 15:1432

Updates to fix balancing bug for standup and walking, updated
Disabled Getup script left step form code, added left step in gett
Fix signed/unsigned compilation warning

Use darwin_host function in deploy-min
remotes/latitude/competition N
Don't clear map when player status
Remove direct kick forward transition

Use normal striker and keeper roles for penalties
remotes/origin/feature Remove direct kick forw:

We only see small patches, so decrease expected size
Enable goal clearing by goalie
Search for orange in ball, ignore single pixels and get closer
Actually set field edge state, fixing filter
Updates to walk parameters for walking reliably on grass
Updates to fix balancing bug for standup and walking, updated o
Disabled Getup script left step form code, added left step in gett
Fix signed/unsigned compilation warning
Fix wlan settings

il L |

=

searen |[

@ Pateh -
P

[Exact w[ALL fields w

=

What is a Commit?

A commit is a series of changes to files

Contains meta information (who, when, etc)

Usually all the changes are related

A small (typically < 80 character) message describing them

What is a Change?

diff --git a/git-basic/presentation.tex b/git-basic/presentation.tex
index 5aB@cf 31628 looedd
i resentation.tex
resentation.tex

Getting Started

e git - The repository program

e git-gui - Graphical representation

Setup an Environment

Create the working directory and navigate to it

1 $ mkdir wrk_dir
> $ cd wrk_dir

Initialise the repository in the working directory

1 $ git init
2 Initialised empty Git repository in wrk_dir/.git/

Workflow

Fetching

Check for changes from remote repositories

1 $ git fetch
2 fatal: No remote repository specified. Please,
specify either a URL or a

3 remote name from which new revisions should be fetched

This means we must setup a remote

1 $§ git remote add origin git@github.com:danielbarry/
test.git

Status

Find out the state of the working tree

1 $ git status
2 On branch master
3 Your branch is up-to-date with ’origin/master’.

4 nothing to commit, working directory clean

e \We are on our master branch

Our latest commit

The fact there is nothing to commit

How to commit if we need to

10

Adding Files

Create simple read me file

1 $ echo -e ’#ReadMe\n\nHello World.’ > readme.md

1 $ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master’.

4 Untracked files:

5 (use "git add <file>..." to include in what will be
committed)

7 readme .md

9 nothing added to commit but untracked files present (
use "git add" to track)

11

Add the file to the commit

1 $ git add readme.md

1 $§ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master’.
4 Changes to be committed:

5 (use "git reset HEAD <file>..." to unstage)

7 new file: readme . md

Visually Adding Files

Repositery Edit Branch Commit Merge Remote Tools Help

Current Branch: master

Unstaged Changes _ |untracked, not staged
D readme.md =/ I* ASCIT text]
#ReadMe

Hello World.

JET]]
Staged Changes (Will Commit)

Initial Commit Message: ~ Amend Last Com

Rescan =
Stage Changed
Sign off

Commit

I Push =
Ready.

13

Commiting & Pushing

Next we commit our changes

1 $ git commit -m ’First commit’

> [master f5led2a] First commit
31 file changed, 3 insertions (+)
4 create mode 100644 readme.md

We fetch to check nothing happened in origin

1 $ git fetch

14

And then we push

$ git push origin master

To git@github.com:danielbarry/test.git
fb7db94..f51ed2a master -> master

Now we check our working tree

$ git status
On branch master

Your branch is up-to-date with

’origin/master ’.

nothing to commit, working directory clean

ii5)

1

2

8

4

We can create changes and check them

$ echo -e ’\n\nNew words’

On branch master

Your branch is up-to-date with

Changes not staged for commit:

(use "git add <file>...

committ

ed)

(use "git checkout --

in working directory)

modified:

readme . md

<file>..."

> readme.md; git status

’origin/master ’.

" to update what will be

to discard changes

no changes added to commit (use "git add" and/or

commit

_au)

"git

16

Stash our changes

$ git stash

Saved working directory and index state WIP on master:
f5led2a First commit

HEAD is now at fbled2a First commit

Check the status of the repository

$ git status

On branch master

Your branch is up-to-date with ’origin/master’.
nothing to commit, working directory clean

17

Pop our changes back

1 $ git stash pop

2 On branch master

3 Your branch is up-to-date with ’origin/master’.

4 Changes not staged for commit:

5 (use "git add <file>..." to update what will be
committed)

6 (use "git checkout -- <file>..." to discard changes

in working directory)

8 modified: readme .md

10 no changes added to commit (use "git add" and/or "git
commit -a"

11 Dropped refs/stash@{0} (154
c631be9fd03b1be0347aad9f9d9fc204f3afd)

We are told the repository status

1

8

1

2

8

Somebody on our team has pushed a change we want

$ git fetch
From github.com:danielbarry/test
f5led2a..bebe774 master -> origin/master

Stash our unstaged changes

$ git stash

Saved working directory and index state WIP on master:

f51ed2a First commit
HEAD is now at fb5led2a First commit

19

Pull in the changes (auto-rebase)

1 $ git pull
2 First, rewinding head to replay your work on top of it

3 Fast-forwarded master to
beb5e774af0029431e7479271cc2bf42455816c14.

20

1

2

8

4

-
=

And pop our stashed changes back

$ git stash pop

On branch master

Your branch is up-to-date with ’origin/master’.

Changes not staged for commit:

(use "git add <file>..." to update what will be

committed)

(use "git checkout -- <file>..." to discard changes

in working directory)
modified: readme .md

no changes added to commit (use "git add"
commit -a")

Dropped refs/stash@{0} (54735
£7330c6907178b770792702a1b44c15983c¢c)

and/or

"git

21

Feature Branch

New features developed on a separate branch

1 $ git checkout -b feature/mnew-branch
> Switched to a new branch ’feature/new-branch’

3 M readme.md

Check which branch we are on

1 $ git branch
> * feature/mnew-branch

8] master

22

1

3

4

Create change on branch and commit it

$ echo -e ’extra data’ > feature.txt; git add feature.

txt; git commit -m ’New commit’
[feature/new-branch 888dfd2] New commit

1 file changed,

1 insertion (+)

create mode 100644 feature.txt

Push change

$ git push origin feature/new-branch

To git@github.com:danielbarry/test.git

* [new branch]

-branch

feature/new-branch

-> feature/new

23

Merge Branch

4

B

6

Checkout the master branch

$ git checkout master
Switched to branch ’master’
M readme .md

Your branch is up-to-date with ’origin/master’.

Merge the branch with master

$ git merge feature/new-branch
Updating beb5e774..888dfd2
Fast-forward

feature.txt | 1 +

1 file changed, 1 insertion (+)

create mode 100644 feature.txt

24

1

2

5]

5

9

10

Now check the status

$ git status
On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

(use "git push" to publish your local commits)

Changes not staged for commit:

(use "git add <file>..." to update what will be

committed)

(use "git checkout -- <file>..." to discard changes

in working directory)
modified: readme .md

no changes added to commit (use "git add"
commit -a")

Commits from the branch are waiting to be pushed

and/or

"git

25

Something Went Wrong

Undo-ing Changes

Check our bad change

1 $§ git status -s

2 M readme.md

Undo all changes in file

1 $ git checkout readme.md

26

Undo-ing Commits

Show the previous commit

1 $ git log -n 1

> commit 888dfd2da79a98b1437dfeab6a8417efec251a916
3 Author: Dan <danbarryl6@googlemail.com>

4 Date: Wed Nov 16 11:37:47 2016 +0000

5

6 New commit

Undo the previous commit

1 $§ git reset --mixed HEAD"

27

Show the previous commit (again)

$ git log -n 1

commit bebe774af0029431e7479271cc2bf42455816¢c14
Author: Dan <danbarryl6@googlemail.com>

Date: Wed Nov 16 11:37:41 2016 +0000

New data

“Bang, and the dirt is gone!”

28

Actually, it is still staged

$ git status
On branch master
Your branch is up-to-date with ’origin/master’.
Untracked files:
(use "git add <file>..." to include in what will be

committed)
feature.txt

nothing added to commit but untracked files present (
use "git add" to track)

So we can do something with this

29

Advanced

Re-Writing History

WARNING: This is dangerous (but powerful ;))
Reasons not to do this:

e Could make data hard to recover
e Will could problems for team mates

e More difficult to undo these changes (but not impossible)
Reasons to do this:

e Something bad happened
e “You're a Git Wizard Harry”

30

Re-Write What?

Amend previous commit git commit --amend

Amend many commits git rebase -i HEAD N

Squashing commits (Use interactive rebase)

Split commits (Use interactive rebase)

Filter-Branch (Scripted re-writing)

Further reading: https:
//git-scm.com/book/en/v2/Git-Tools-Rewriting-History

31

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

Conclusion

About Presentation

e Content -
https://github.com/danielbarry/presentations

e Presentation - http://www.latex-project.org
e Theme - https://github.com/matze/mtheme

32

https://github.com/danielbarry/presentations
http://www.latex-project.org
https://github.com/matze/mtheme

