
Git Basics

Daniel Barry

November, 2016

University of Hertfordshire



Introduction



Why use Git?

• Replace the old “copy and rename” workflow

• History of how the project was built

• Ability to go back to any point during the project

• Always having a working version

• Work in teams easily

• Access to large open source projects

• Employers prefer you know how repositories work

This presentation was built in a Git repository!

1



Quick Git History

• Patches and Archives for Linux Kernel (1991 - 2002)

• BitKeeper for Linux Kernel (2002 - 2005)

• In 2005, BitKeeper no longer free (Larry McVoy)

• Linus Torvalds designed Git to be fast, simple, non-linear,

distributed and scalable

• Git for Linux Kernel (2005 - now)

More: https://en.wikipedia.org/wiki/Git

2

https://en.wikipedia.org/wiki/Git


What is Git?

• Inspired by BitKeeper

• Version control system

• Fully distributed

• Merges, even three-way merges

• Robust against corruption

Git was named after Linus...

3



Branches?

4



What is a Commit?

• A commit is a series of changes to files

• Contains meta information (who, when, etc)

• Usually all the changes are related

• A small (typically 6 80 character) message describing them

5



What is a Change?

6



Getting Started



Requirements

• git - The repository program

• git-gui - Graphical representation

7



Setup an Environment

Create the working directory and navigate to it� �
1 $ mkdir wrk_dir

2 $ cd wrk_dir

3� �
Initialise the repository in the working directory� �

1 $ git init

2 Initialised empty Git repository in wrk_dir /.git/� �

8



Workflow



Fetching

Check for changes from remote repositories� �
1 $ git fetch

2 fatal: No remote repository specified. Please ,

specify either a URL or a

3 remote name from which new revisions should be fetched

.� �
This means we must setup a remote� �

1 $ git remote add origin git@github.com:danielbarry/

test.git� �
9



Status

Find out the state of the working tree� �
1 $ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 nothing to commit , working directory clean� �
• We are on our master branch

• Our latest commit

• The fact there is nothing to commit

• How to commit if we need to

10



Adding Files

Create simple read me file� �
1 $ echo -e ’#ReadMe\n\nHello World.’ > readme.md� �� �
1 $ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 Untracked files:

5 (use "git add <file >..." to include in what will be

committed)

6

7 readme.md

8

9 nothing added to commit but untracked files present (

use "git add" to track)� �
11



Add the file to the commit� �
1 $ git add readme.md� �� �
1 $ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 Changes to be committed:

5 (use "git reset HEAD <file >..." to unstage)

6

7 new file: readme.md� �

12



Visually Adding Files

13



Commiting & Pushing

Next we commit our changes� �
1 $ git commit -m ’First commit ’

2 [master f51ed2a] First commit

3 1 file changed , 3 insertions (+)

4 create mode 100644 readme.md� �
We fetch to check nothing happened in origin� �

1 $ git fetch� �

14



And then we push� �
1 $ git push origin master

2 To git@github.com:danielbarry/test.git

3 fb7db94 .. f51ed2a master -> master� �
Now we check our working tree� �

1 $ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 nothing to commit , working directory clean� �

15



Stashing

We can create changes and check them� �
1 $ echo -e ’\n\nNew words ’ > readme.md; git status

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 Changes not staged for commit:

5 (use "git add <file >..." to update what will be

committed)

6 (use "git checkout -- <file >..." to discard changes

in working directory)

7

8 modified: readme.md

9

10 no changes added to commit (use "git add" and/or "git

commit -a")� �
16



Stash our changes� �
1 $ git stash

2 Saved working directory and index state WIP on master:

f51ed2a First commit

3 HEAD is now at f51ed2a First commit� �
Check the status of the repository� �

1 $ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 nothing to commit , working directory clean� �

17



Pop our changes back� �
1 $ git stash pop

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 Changes not staged for commit:

5 (use "git add <file >..." to update what will be

committed)

6 (use "git checkout -- <file >..." to discard changes

in working directory)

7

8 modified: readme.md

9

10 no changes added to commit (use "git add" and/or "git

commit -a")

11 Dropped refs/stash@ {0} (154

c631be9fd03b1be0347aad9f9d9fc204f3afd)� �
We are told the repository status

18



Pulling

Somebody on our team has pushed a change we want� �
1 $ git fetch

2 From github.com:danielbarry/test

3 f51ed2a .. be5e774 master -> origin/master� �
Stash our unstaged changes� �

1 $ git stash

2 Saved working directory and index state WIP on master:

f51ed2a First commit

3 HEAD is now at f51ed2a First commit� �
19



Pull in the changes (auto-rebase)� �
1 $ git pull

2 First , rewinding head to replay your work on top of it

...

3 Fast -forwarded master to

be5e774af0029431e7479271cc2bf42455816c14.� �

20



And pop our stashed changes back� �
1 $ git stash pop

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 Changes not staged for commit:

5 (use "git add <file >..." to update what will be

committed)

6 (use "git checkout -- <file >..." to discard changes

in working directory)

7

8 modified: readme.md

9

10 no changes added to commit (use "git add" and/or "git

commit -a")

11 Dropped refs/stash@ {0} (54735

f7330c6907178b770792702a1b44c15983c)� �
21



Feature Branch

New features developed on a separate branch� �
1 $ git checkout -b feature/new -branch

2 Switched to a new branch ’feature/new -branch ’

3 M readme.md� �
Check which branch we are on� �

1 $ git branch

2 * feature/new -branch

3 master� �

22



Create change on branch and commit it� �
1 $ echo -e ’extra data ’ > feature.txt; git add feature.

txt; git commit -m ’New commit ’

2 [feature/new -branch 888 dfd2] New commit

3 1 file changed , 1 insertion (+)

4 create mode 100644 feature.txt� �
Push change� �

1 $ git push origin feature/new -branch

2 To git@github.com:danielbarry/test.git

3 * [new branch] feature/new -branch -> feature/new

-branch� �

23



Merge Branch

Checkout the master branch� �
1 $ git checkout master

2 Switched to branch ’master ’

3 M readme.md

4 Your branch is up-to-date with ’origin/master ’.� �
Merge the branch with master� �

1 $ git merge feature/new -branch

2 Updating be5e774 ..888 dfd2

3 Fast -forward

4 feature.txt | 1 +

5 1 file changed , 1 insertion (+)

6 create mode 100644 feature.txt� �
24



Now check the status� �
1 $ git status

2 On branch master

3 Your branch is ahead of ’origin/master ’ by 1 commit.

4 (use "git push" to publish your local commits)

5 Changes not staged for commit:

6 (use "git add <file >..." to update what will be

committed)

7 (use "git checkout -- <file >..." to discard changes

in working directory)

8

9 modified: readme.md

10

11 no changes added to commit (use "git add" and/or "git

commit -a")� �
Commits from the branch are waiting to be pushed

25



Something Went Wrong



Undo-ing Changes

Check our bad change� �
1 $ git status -s

2 M readme.md� �
Undo all changes in file� �

1 $ git checkout readme.md� �

26



Undo-ing Commits

Show the previous commit� �
1 $ git log -n 1

2 commit 888 dfd2da79a98b1437dfea6a8417efec251a916

3 Author: Dan <danbarry16@googlemail.com >

4 Date: Wed Nov 16 11:37:47 2016 +0000

5

6 New commit� �
Undo the previous commit� �

1 $ git reset --mixed HEAD^� �
27



Show the previous commit (again)� �
1 $ git log -n 1

2 commit be5e774af0029431e7479271cc2bf42455816c14

3 Author: Dan <danbarry16@googlemail.com >

4 Date: Wed Nov 16 11:37:41 2016 +0000

5

6 New data� �
“Bang, and the dirt is gone!”

28



Actually, it is still staged� �
1 $ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master ’.

4 Untracked files:

5 (use "git add <file >..." to include in what will be

committed)

6

7 feature.txt

8

9 nothing added to commit but untracked files present (

use "git add" to track)� �
So we can do something with this

29



Advanced



Re-Writing History

WARNING: This is dangerous (but powerful ;) )

Reasons not to do this:

• Could make data hard to recover

• Will could problems for team mates

• More difficult to undo these changes (but not impossible)

Reasons to do this:

• Something bad happened

• “You’re a Git Wizard Harry”

30



Re-Write What?

• Amend previous commit git commit --amend

• Amend many commits git rebase -i HEAD N

• Squashing commits (Use interactive rebase)

• Split commits (Use interactive rebase)

• Filter-Branch (Scripted re-writing)

Further reading: https:

//git-scm.com/book/en/v2/Git-Tools-Rewriting-History

31

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History


Conclusion



About Presentation

• Content -

https://github.com/danielbarry/presentations

• Presentation - http://www.latex-project.org

• Theme - https://github.com/matze/mtheme

32

https://github.com/danielbarry/presentations
http://www.latex-project.org
https://github.com/matze/mtheme

