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Introduction



Why use Git?

Replace the old “copy and rename” workflow

History of how the project was built

Ability to go back to any point during the project

Always having a working version

Work in teams easily

Access to large open source projects

Employers prefer you know how repositories work

This presentation was built in a Git repository!



Quick Git History

Patches and Archives for Linux Kernel (1991 - 2002)
BitKeeper for Linux Kernel (2002 - 2005)
In 2005, BitKeeper no longer free (Larry McVoy)

Linus Torvalds designed Git to be fast, simple, non-linear,
distributed and scalable

e Git for Linux Kernel (2005 - now)

More: https://en.wikipedia.org/wiki/Git


https://en.wikipedia.org/wiki/Git

Inspired by BitKeeper

Version control system

Fully distributed
e Merges, even three-way merges

e Robust against corruption

Git was named after Linus...



Branches?
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What is a Commit?

A commit is a series of changes to files

Contains meta information (who, when, etc)

Usually all the changes are related

A small (typically < 80 character) message describing them



What is a Change?

diff --git a/git-basic/presentation.tex b/git-basic/presentation.tex
index 5aB@cf 31628 looedd
i resentation.tex
resentation.tex




Getting Started



e git - The repository program

e git-gui - Graphical representation



Setup an Environment

Create the working directory and navigate to it

1 $ mkdir wrk_dir
> $ cd wrk_dir

Initialise the repository in the working directory

1 $ git init
2 Initialised empty Git repository in wrk_dir/.git/



Workflow



Fetching

Check for changes from remote repositories

1 $ git fetch
2 fatal: No remote repository specified. Please,
specify either a URL or a

3 remote name from which new revisions should be fetched

This means we must setup a remote

1 $§ git remote add origin git@github.com:danielbarry/
test.git



Status

Find out the state of the working tree

1 $ git status
2 On branch master
3 Your branch is up-to-date with ’origin/master’.

4 nothing to commit, working directory clean

e \We are on our master branch

Our latest commit

The fact there is nothing to commit

How to commit if we need to
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Adding Files

Create simple read me file

1 $ echo -e ’#ReadMe\n\nHello World.’ > readme.md

1 $ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master’.

4 Untracked files:

5 (use "git add <file>..." to include in what will be
committed)

7 readme .md

9 nothing added to commit but untracked files present (
use "git add" to track)
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Add the file to the commit

1 $ git add readme.md

1 $§ git status

2 On branch master

3 Your branch is up-to-date with ’origin/master’.
4 Changes to be committed:

5 (use "git reset HEAD <file>..." to unstage)

7 new file: readme . md



Visually Adding Files

Repositery Edit Branch Commit Merge Remote Tools Help

Current Branch: master

Unstaged Changes _ |untracked, not staged
D readme.md =/ I* ASCIT text ]
#ReadMe

Hello World.
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Initial Commit Message: ~ Amend Last Com
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Commit

I Push =
Ready.
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Commiting & Pushing

Next we commit our changes

1 $ git commit -m ’First commit’

> [master f5led2a] First commit
31 file changed, 3 insertions (+)
4 create mode 100644 readme.md

We fetch to check nothing happened in origin

1 $ git fetch
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And then we push

$ git push origin master

To git@github.com:danielbarry/test.git
fb7db94..f51ed2a master -> master

Now we check our working tree

$ git status
On branch master

Your branch is up-to-date with

’origin/master ’.

nothing to commit, working directory clean

ii5)



1

2

8

4

We can create changes and check them

$ echo -e ’\n\nNew words’

On branch master

Your branch is up-to-date with

Changes not staged for commit:

(use "git add <file>...

committ

ed)

(use "git checkout --

in working directory)

modified:

readme . md

<file>..."

> readme.md; git status

’origin/master ’.

" to update what will be

to discard changes

no changes added to commit (use "git add" and/or

commit

_au)

"git
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Stash our changes

$ git stash

Saved working directory and index state WIP on master:
f5led2a First commit

HEAD is now at fbled2a First commit

Check the status of the repository

$ git status

On branch master

Your branch is up-to-date with ’origin/master’.
nothing to commit, working directory clean

17



Pop our changes back

1 $ git stash pop

2 On branch master

3 Your branch is up-to-date with ’origin/master’.

4 Changes not staged for commit:

5 (use "git add <file>..." to update what will be
committed)

6 (use "git checkout -- <file>..." to discard changes

in working directory)

8 modified: readme .md

10 no changes added to commit (use "git add" and/or "git
commit -a"

11 Dropped refs/stash@{0} (154
c631be9fd03b1be0347aad9f9d9fc204f3afd)

We are told the repository status



1
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8

Somebody on our team has pushed a change we want

$ git fetch
From github.com:danielbarry/test
f5led2a..bebe774 master -> origin/master

Stash our unstaged changes

$ git stash

Saved working directory and index state WIP on master:

f51ed2a First commit
HEAD is now at fb5led2a First commit

19



Pull in the changes (auto-rebase)

1 $ git pull
2 First, rewinding head to replay your work on top of it

3 Fast-forwarded master to
beb5e774af0029431e7479271cc2bf42455816c14.
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And pop our stashed changes back

$ git stash pop

On branch master

Your branch is up-to-date with ’origin/master’.

Changes not staged for commit:

(use "git add <file>..." to update what will be

committed)

(use "git checkout -- <file>..." to discard changes

in working directory)
modified: readme .md

no changes added to commit (use "git add"
commit -a")

Dropped refs/stash@{0} (54735
£7330c6907178b770792702a1b44c15983c¢c)

and/or

"git
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Feature Branch

New features developed on a separate branch

1 $ git checkout -b feature/mnew-branch
> Switched to a new branch ’feature/new-branch’

3 M readme.md

Check which branch we are on

1 $ git branch
> * feature/mnew-branch

8] master
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Create change on branch and commit it

$ echo -e ’extra data’ > feature.txt; git add feature.

txt; git commit -m ’New commit’
[feature/new-branch 888dfd2] New commit

1 file changed,

1 insertion (+)

create mode 100644 feature.txt

Push change

$ git push origin feature/new-branch

To git@github.com:danielbarry/test.git

* [new branch]

-branch

feature/new-branch

-> feature/new
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Merge Branch

4

B

6

Checkout the master branch

$ git checkout master
Switched to branch ’master’
M readme .md

Your branch is up-to-date with ’origin/master’.

Merge the branch with master

$ git merge feature/new-branch
Updating beb5e774..888dfd2
Fast-forward

feature.txt | 1 +

1 file changed, 1 insertion (+)

create mode 100644 feature.txt
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Now check the status

$ git status
On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

(use "git push" to publish your local commits)

Changes not staged for commit:

(use "git add <file>..." to update what will be

committed)

(use "git checkout -- <file>..." to discard changes

in working directory)
modified: readme .md

no changes added to commit (use "git add"
commit -a")

Commits from the branch are waiting to be pushed

and/or

"git
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Something Went Wrong



Undo-ing Changes

Check our bad change

1 $§ git status -s

2 M readme.md

Undo all changes in file

1 $ git checkout readme.md

26



Undo-ing Commits

Show the previous commit

1 $ git log -n 1

> commit 888dfd2da79a98b1437dfeab6a8417efec251a916
3 Author: Dan <danbarryl6@googlemail.com>

4 Date: Wed Nov 16 11:37:47 2016 +0000

5

6 New commit

Undo the previous commit

1 $§ git reset --mixed HEAD"
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Show the previous commit (again)

$ git log -n 1

commit bebe774af0029431e7479271cc2bf42455816¢c14
Author: Dan <danbarryl6@googlemail.com>

Date: Wed Nov 16 11:37:41 2016 +0000

New data

“Bang, and the dirt is gone!”
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Actually, it is still staged

$ git status
On branch master
Your branch is up-to-date with ’origin/master’.
Untracked files:
(use "git add <file>..." to include in what will be

committed)
feature.txt

nothing added to commit but untracked files present (
use "git add" to track)

So we can do something with this
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Advanced



Re-Writing History

WARNING: This is dangerous (but powerful ;) )
Reasons not to do this:

e Could make data hard to recover
e Will could problems for team mates

e More difficult to undo these changes (but not impossible)
Reasons to do this:

e Something bad happened
e “You're a Git Wizard Harry”
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Re-Write What?

Amend previous commit git commit --amend

Amend many commits git rebase -i HEAD N

Squashing commits (Use interactive rebase)

Split commits (Use interactive rebase)

Filter-Branch (Scripted re-writing)

Further reading: https:
//git-scm.com/book/en/v2/Git-Tools-Rewriting-History
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Conclusion




About Presentation

e Content -
https://github.com/danielbarry/presentations

e Presentation - http://www.latex-project.org
e Theme - https://github.com/matze/mtheme
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